Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
A__F1(s1(0)) -> A__P1(s1(0))
MARK1(s1(X)) -> MARK1(X)
MARK1(f1(X)) -> A__F1(mark1(X))
A__F1(s1(0)) -> A__F1(a__p1(s1(0)))
MARK1(p1(X)) -> A__P1(mark1(X))
MARK1(cons2(X1, X2)) -> MARK1(X1)
MARK1(p1(X)) -> MARK1(X)
MARK1(f1(X)) -> MARK1(X)
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__F1(s1(0)) -> A__P1(s1(0))
MARK1(s1(X)) -> MARK1(X)
MARK1(f1(X)) -> A__F1(mark1(X))
A__F1(s1(0)) -> A__F1(a__p1(s1(0)))
MARK1(p1(X)) -> A__P1(mark1(X))
MARK1(cons2(X1, X2)) -> MARK1(X1)
MARK1(p1(X)) -> MARK1(X)
MARK1(f1(X)) -> MARK1(X)
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__F1(s1(0)) -> A__F1(a__p1(s1(0)))
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
A__F1(s1(0)) -> A__F1(a__p1(s1(0)))
Used argument filtering: A__F1(x1) = x1
s1(x1) = s
0 = 0
a__p1(x1) = a__p
p1(x1) = p
Used ordering: Quasi Precedence:
s > [a__p, p] > 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
MARK1(s1(X)) -> MARK1(X)
MARK1(cons2(X1, X2)) -> MARK1(X1)
MARK1(f1(X)) -> MARK1(X)
MARK1(p1(X)) -> MARK1(X)
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MARK1(p1(X)) -> MARK1(X)
Used argument filtering: MARK1(x1) = x1
s1(x1) = x1
cons2(x1, x2) = x1
f1(x1) = x1
p1(x1) = p1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
MARK1(s1(X)) -> MARK1(X)
MARK1(cons2(X1, X2)) -> MARK1(X1)
MARK1(f1(X)) -> MARK1(X)
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MARK1(f1(X)) -> MARK1(X)
Used argument filtering: MARK1(x1) = x1
s1(x1) = x1
cons2(x1, x2) = x1
f1(x1) = f1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
MARK1(s1(X)) -> MARK1(X)
MARK1(cons2(X1, X2)) -> MARK1(X1)
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MARK1(cons2(X1, X2)) -> MARK1(X1)
Used argument filtering: MARK1(x1) = x1
s1(x1) = x1
cons2(x1, x2) = cons1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
MARK1(s1(X)) -> MARK1(X)
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MARK1(s1(X)) -> MARK1(X)
Used argument filtering: MARK1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
a__f1(0) -> cons2(0, f1(s1(0)))
a__f1(s1(0)) -> a__f1(a__p1(s1(0)))
a__p1(s1(0)) -> 0
mark1(f1(X)) -> a__f1(mark1(X))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(0) -> 0
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(s1(X)) -> s1(mark1(X))
a__f1(X) -> f1(X)
a__p1(X) -> p1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.